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Abstract 

Associative learning is an important part of human cognition, 
and is thought to play key role in list learning.  We present here 
an account of associative learning that learns asymmetric item-
to-item associations, strengthening or weakening associations 
over time with repeated exposures.  This account, combined 
with an existing account of activation strengthening and decay, 
predicts the complicated results of a multi-trial free and serial 
recall task, including asymmetric contiguity effects that 
strengthen over time (Klein, Addis, & Kahana, 2005). 
Keywords: associative learning; priming; cognitive models; 
list memory 

Introduction 
Associative learning is an essential component of human 
cognition, thought to be part of many mental phenomena such 
as classical conditioning (Rescorla & Wagner, 1972), 
expectation-driven learning (Lukes, Thompson, & Werbos, 
1990), similarity judgments (Hiatt & Trafton, 2013), and 
managing sequential tasks (Hiatt & Trafton, 2015).  Despite 
its ubiquity, it is hard to model directly due to its entangled 
ties to other aspects of cognition (e.g., memory decay). 

List learning is one task in which associative learning is 
increasingly thought to play a role and, because it involves 
fairly simple tasks, can be helpful in isolating and 
understanding any underlying associative mechanisms that 
may be at play (Howard & Kahana, 1999; Kahana, 1996).  
These tasks typically involve being shown a list of simple 
words or numbers, and being asked to recall them as 
accurately as possible. 

One recent experiment studied list learning under both free 
recall (recalling list items in any order), and serial recall 
(recalling list items in the same order as they were presented), 
including an examination of how recall patterns change over 
several presentations of the list (i.e., multi-presentation 
recall) (Klein et al., 2005). In addition to serial position (SP), 
which shows each list item’s recall accuracy, the study also 
considers conditional response probabilities as a function of 
lag (CRPs), which measures the distribution of successive 
recalls as a function of item distance from the current item.  
These two measures help to distinguish between effects 
arising from primacy and recency of items, and effects arising 
from the close temporal proximity of items to one another in 
the list (e.g., contiguity effects).  The detailed results of this 

study, which show how these measures change over multiple 
list presentations, present a challenge for other theories of 
memory (e.g., Henson, 1998; Brown, Neath, & Chater, 2007; 
Polyn, Norman, & Kahana, 2009), which generally match 
some, but not all, of the data. 

We present here a theory of memory recall that heavily 
emphasizes the role of associative learning.  This theory 
stems from the ACT-R architecture, which has been shown 
to perform very well on more limited list recall tasks in the 
past (Anderson, Bothell, Lebiere & Matessa, 1998).  Since 
ACT-R is a general theory of cognition, and is not limited to 
memory, our use of ACT-R also connects this work with a 
plethora of literature across many different domains 
(Thomson, Lebiere, Anderson, & Staszewski, 2014; Hiatt & 
Trafton, 2013; Pyke, West, & Lefevre, 2007).  While very 
promising, ACT-R’s account of associative learning, 
however, is insufficient to capture data in list memory; 
specifically, it does not strengthen associations with repeated 
exposures in a manner that effectively accumulates over time, 
making it difficult for this account to predict the multi-
presentation recall data we consider here. 

In this paper, then, we heavily expand and improve the 
notion of associative learning in ACT-R.  While we still keep 
many of its basic features – namely, spreading activation over 
asymmetric, item-to-item associations -- we developed a 
mechanism for associations to be learned, and strengthened, 
as new or repeated items are presented over time.  We then 
combine activation via associative learning with ACT-R’s 
second, and well supported, source of learning, activation 
strengthening (Anderson et al., 1998; Schneider & Anderson, 
2011), which favors items that were recently or frequently in 
memory.  Activation strengthening then serves to predict the 
exhibited primacy and recency effects, while associative 
learning predicts the shown contiguity effects.  Overall, our 
account provides a good account for the data from Klein et 
al. (2005), showing primacy, recency, and asymmetric 
contiguity effects that strengthen over time. 

The contributions of this paper are thus two-fold: a new, 
richer account of associative learning; and an overall theory 
of memory recall that combines this with an existing account 
of activation strengthening and decay.  In the next section, we 
describe the list memory task we model in more detail.  Then, 
we relate these results to other theories of list memory and 
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memory recall, and qualitatively distinguish our approach 
from these other theories.  Then, we discuss our theory in 
more detail, present results, and end with a discussion of the 
implications of our theory. 

Previous Experimental Results:             
Multiple-Presentation List Recall 

To evaluate our theory of memory recall, we modeled the 
multi-presentation list recall task from Klein et al. (2005).  A 
trial consisted of 5 separate presentations of a list of words. 
Each list consisted of 19 non-repeating words that were 
presented verbally, with a word presented every 1500ms.  
The words did not rhyme, and appear with similar 
frequencies in the English language.  Each time the full list 
was presented, a tone and visual instructions then cued 
participants to recall the list by speaking the list items aloud.  

The experiment included three conditions of presentation 
and recall.  In the free-varied condition, list items were 
randomized between list presentations and participants were 
instructed to recall the list in any order (e.g., free recall).  In 
the free-constant condition, list items were in the same 
position between list presentations and participants were 
instructed to recall the list in any order (e.g., free recall).  
Finally, in the serial-constant condition, list items were in the 
same position between list presentations and participants 
were instructed to recall the list in the order it was perceived 
(e.g., serial recall). Twelve participants completed 21 test 
trials each for each condition across several sessions. In each 
session, participants completed a set of trials from only one 
condition. 

As mentioned earlier, participant responses were scored 
according to serial position (SP), and conditional response 
probability (CRP) as a function of lag. Serial position 
measures recall accuracy as a function of an item’s position 
in the list; that is, for each list position (1st, 2nd, 3rd, etc.), the 
probability that participants report the corresponding item 
during recall. Typically recall is best for items in early 
positions (primacy) and late positions (recency). The 
conditional response probability as a function of lag measures 
the distribution of successive recalls as a function of item 
distance from the current item in the presentation of the list.  
Mathematically, it shows the probability of recalling item 
i+lag after recalling item i (see Kahana, 1996 for more 
details).  Typically, as per the contiguity effect, after recalling 
item i, learners are most likely to next recall the successive 
item (i+1) from the list presentation.  Participants were also 
scored according to item score, which measures how many 
total list items were successfully recalled for each 
presentation regardless of order. 

In accordance with prior findings (Howard & Kahana, 
1999; Kahana, 1996), this study showed several noteworthy 
effects.  First, the serial position measure (shown with our 
model results in Figure 2) indicated strong primacy and 
recency effects, where participants are biased towards 
recalling items at the beginning and end of the list.  In both 
free recall conditions, the recency effect is generally favored, 
whereas in serial recall, the primacy effect dominates and the 

recency effect is significantly lower.  These effects are 
attenuated across learning, however, as subsequent 
presentations increase the accuracy rate overall.  

Second, the conditional response probability measure 
(shown with our model results in Figure 3) indicated a clear 
contiguity effect, where participants are biased towards 
recalling neighbors of the item they just recalled.  For all 
three conditions, this effect was also significantly 
asymmetric, where participants favored subsequent items as 
opposed to preceding items.  Multiple significant interactions 
between presentation, transition direction and condition show 
that the asymmetry shows different characterizations for each 
condition over time.  Specifically, the asymmetric effect was 
stronger in the serial-constant condition than the others, and 
for both it and the free-constant condition, the effect 
increased with the number of presentations.  While the effect 
size in the free-varied condition was comparable to the free-
constant condition after the first presentation, however, it 
decreased with further presentations until, after the fifth 
presentation, it was virtually absent.  

The measure of item score showed a significant increase in 
accuracy over time.  Although we correctly predict this 
increase, since this does not shed much additional light on 
distinguishing between the different theories of list recall, we 
do not focus on it much in this paper. 

The study’s authors interpret these results as being 
supportive of an associative account of list learning, as do we.  
To preview our approach, we explain the primacy effects via 
mental rehearsal, and we explain the recency effects via the 
decaying nature of activation strengthening, where more 
recent items in memory are more likely to be recalled.  The 
asymmetric contiguity effect, and how it changes over time, 
is explained by asymmetries in associative learning.  We go 
into this in more detail in the following section. 

Associative Learning in Memory Recall 
Our account of associative learning, as we have said, is 
situated in the cognitive architecture ACT-R/E (Adaptive 
Character of Thought-Rational / Embodied; Trafton et al., 
2013), an embodied version of the cognitive architecture 
ACT-R (Anderson et al., 2004).  ACT-R is an integrated 
theory of human cognition in which a “production system 
operates on a declarative memory” (Anderson et al., 1998).  
Key to this paper, in ACT-R, item recall depends on three 
main components: activation strengthening, activation noise, 
and associative activation.  These three values are summed 
together to represent an item’s total activation.  When a recall 
is requested, the item with the highest total activation is 
retrieved, subject to a retrieval threshold; if no item’s 
activation is above the threshold, the retrieval is said to fail 
and no item is recalled.  We next discuss each of these 
components in turn, focusing on associative activation, which 
is the main contribution of this work.  

Activation Strengthening 
ACT-R’s well-established theory of activation strengthening 
has been shown to be a very good predictor of human 
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declarative memory (Anderson et al., 1998; Anderson, 2007; 
Schneider & Anderson, 2011). Intuitively, activation 
strengthening depends on how frequently and recently a 
memory has been relevant in the past. It is designed to 
represent the activation of a memory over longer periods of 
time and, generally, is highest right after the memory has 
been accessed in working memory, slowly decaying as time 
passes.  Working memory represents the items that are 
currently the model’s focus of attention.  Activation 
strengthening, As, is calculated as: 

 𝐴𝑠(𝑖) = ln (∑ 𝑡𝑗
−𝑑

𝑛

𝑗=1
) 

where n is the number of times an item i has been accessed in 
the past, tj is the time that has passed since the jth access, and 
d is the strengthening learning parameter, specifying items’ 
rate of decay, and which defaults to 0.5.  Importantly, this 
equation predicts that items that have occurred recently, or 
have been rehearsed more, are more likely to be recalled than 
those that have not. 

Activation Noise 
The activation noise of a memory is drawn from a logistic 
distribution with mean 0 and standard deviation the 
parameter σc. It is a transient value that changes each time it 
is used, and models the neuronal noise found in the human 
brain. This parameter’s default value was 0.25, a common 
value for this parameter across models. 

Associative Activation 
While associations are not new to the ACT-R framework 
(e.g., Anderson, 1983), we adopt a new account of associative 
learning as part of our approach (Thomson & Lebiere, 
2013a).  Like in the original version, a third contributor to the 
activation of items in memory is associative activation, which 
sources from the contents of working memory.  Activation 
then spread along associations to items or memories related 
to those in working memory.  Here, we describe this new 
account qualitatively, for the purposes of clarity; more 
technical details, formulations, and justifications of its 
mechanisms can be found in previous work (Thomson & 
Lebiere, 2013a; 2013b; Thomson, Bennati & Lebiere, 2014). 

Important to this paper are that associative strengths are 
learned, strengthened, and weakened over time, as new or 
repeat items are encountered.  Additionally, as in the original 
version, associations are directional; an association can be 
stronger from an item i to an item j, for example, than the 
association from item j to item i (or, there could be no 
association from item j to item i at all). 

Associations are learned between items that are relevant in 
working memory in temporal proximity to one another, and 
lead from earlier items to later items.  The strength of the 
association (or how strongly it is increased) is determined by 
the amount of time that passes between when the items were 
each in working memory. If one item is immediately 
followed by another in working memory, they will be very 
strongly associated; on the other hand, if an item has been out 

of working memory for a while before another is added, they 
will be only weakly associated. 

In this way, rich associations are formed that point forward 
in time, relating past items to current ones. Unlike explicit 
chaining models (e.g., Lee & Estes, 1977) that form only 
direct item-item chains between immediately adjacent 
neighboring items (i.e., between the last item and the current 
item entering working memory), we form multiple item-item 
associations between all items recently in working memory 
and newly added items. 

There are two other substantial differences between ACT-
R’s original associative learning mechanisms and our new 
account’s that are not relevant to this model, but that we 
mention here for completeness.  First, our associative 
learning mechanism is based on Hebbian, not Bayesian 
learning; recently, we have argued that this is better suited to 
the types of large, complicated tasks that human memory is 
able to handle (Thomson & Lebiere, 2013a).  Additionally, 
our mechanism includes buffer-specific associations that 
create a rich context for memory recall; again, however, that 
is outside the scope of this experiment. 

Modeling Multi-Presentation List Recall 
We wrote a model in ACT-R/E that completes both free and 
serial multi-presentation recall tasks, as were in Klein et al. 
(2005).  We begin by assuming that, before a task begins, the 
model has a “start” concept in working memory that tells it 
to wait for the stimuli to start being presented; we also assume 
that the model has no a priori knowledge of these words (i.e., 
the words are not already associated with other items or 
concepts). Upon hearing a stimulus, the model initially 
encodes the stimulus as a word.  The rapid pace of the 
experiment leaves little time for rehearsal; therefore, the 
model rehearses the first stimulus, but forgoes rehearsal after 
that due to the tight time constraints. 

Once the full list has been presented, the model then 
attempts to recall each element of the list; at any given time, 
the item with the highest total activation is recalled.  
Retrievals proceed until the complete list has been recalled or 
until a recall request fails, at which point the presentation is 
considered complete.  

The only difference between how the model performs the 
free and serial recall tasks is that, when beginning to recall a 
list in the serial recall task, the model first retrieves the “start” 
concept in an attempt to start at the beginning of the list. It 
forgoes this step in the free recall task. 

When the model looks at a new item, the previous item 
immediately precedes the new item in working memory.  
Thus, a strong positive association is formed (or 
strengthened) from the preceding item to the new item.  
Additionally, associations from more distant items to the new 
item are also formed or strengthened, attenuated by their 
temporal distance to the new item.  Figure 1 shows an 
example of what the associations look like after three items 
of a list have been presented. 
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With respect to parameters, all ACT-R/E parameters were set 
at their default values. The three associative learning 
parameters (learning rate, interference rate, and residual 
activation decay rate; see Thomson, Lebiere, & Bennati, 
2014) were set to represent a fairly moderate pace of 
associative learning (set at 1.5, .25, and .5, respectively). 
Note that these parameters were the same for both the serial 
and recall tasks and, thus, for all three conditions of the 
experiment we are modeling. 

Model Explanations 
The model explains the data according to both activation 
strengthening and associative activation. First, the decaying 
nature of activation strengthening implies that more recently 
presented stimuli will be more likely to be recalled, creating 
a recency effect among all conditions.  Primacy is primarily 
explained by the rehearsal of the first few items.  Primacy is 
relatively stronger in serial recall because the model makes 
the effort to retrieve the “start” concept before beginning list 
recall, which activates the beginning items of the list.  On the 
other hand, the lower primacy effect in free recall implies that 
it will have a stronger recency effect.  This is because the 
beginning items of the list will provide less competition to 
the items at the end of the list, leading to an increased bias 
towards those ending items. 

The forward asymmetry of the associative structure created 
as the model learns the list clearly explains the forward 
asymmetry effects shown by the conditional response 
probability measure.  When an item is in working memory, 
the subsequent item receives a strong amount of associative 
activation; the item after that, in turn, receives a much 
smaller, but still positive, amount.  This boosts the probability 
that items in the forward direction will be recalled at any 
given time.  The model also indicates that this asymmetry will 
only increase across multiple presentations of both free-
constant and serial-constant conditions as the forward-
leaning associations are strengthened.  For the free-varied 
condition, the model explains why the asymmetry contiguity 
effect diminishes over multiple presentations: it is because, 
in this condition, associations are created and strengthened in 
various directions across various items.  

Our model also explains why the serial-constant condition 
has a stronger contiguity effect than the free-constant 
condition.  This is due to how the model learns during both 
the learning and recall phases of the experiment.  In the serial-

constant condition, because the model attempts to report the 
items in order, the forward-facing associations are 
strengthened during the recall phase; in the free-constant 
condition, since items are not reported as serially, the 
forward-facing associations are strengthened to a lesser 
extent.  This different in associative strength ultimately 
predicts that the serial-constant condition will exhibit 
stronger continuity effects than the free-constant condition. 

Model Results  
To collect results, the model performed all three conditions 
of the Klein et al. (2005) experiment, performing the serial 
recall or free recall task as appropriate.  All stimuli were 
presented at the same rate as they were to the human 
participants, and the same words were used as stimuli. The 
model was run for the same number of trials (252) per 
condition as all human participants (252 trials); we assume 
that the model begins each trial with no knowledge of any of 
the items.  

As predicted, the model strongly predicts serial position 
curves in serial-constant condition (r2 = .92; see Figure 2). 
The results of the serial position curve in the free-varied and 
free-constant, while acceptable, were not as strong (r2 = .71 
and 0.67, respectively).  An in-depth look at the data suggests 
that this lower-quality fit is due to us not accounting for 
primacy effects strongly enough in later presentations; we 

Figure 2. Serial Position curves, showing the overall recall 
probability for each list item, across serial-constant, free-
constant, and free-varied conditions for both human and 
model. Paneled from left to right are the results for 
presentations 1, 3, and 5, respectively. As seen, the model 
captures the broad primacy and recency effects in the first 
presentation, but not later ones; we believe this is due to a 
higher emphasis on rehearsal than we assume here. 
 

0"START' 1"MANNER' 2"WORKER' 3"SENATE'
0.91' 0.91' 0.91'

0.61' 0.61'

0.29'

Figure 1. A sample associative structure, including 
associative strengths, after three items of a list have been 
viewed.  Of note is that association strengths weaken as items 
become farther removed in time, as well as the asymmetric 
structure of the associations.  Note that, for clarity, we omit 
here associations not relevant to our discussion. 
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believe this is due to participants putting more emphasis on 
rehearsal than we assume, and plan to investigate this further. 

As seen in Figure 3, our model strongly matches the 
contiguity affects across all three conditions (r2 = .89 for free-
varied; r2 = .96 for free-constant; and r2 = .99 for serial-
constant). As predicted, the asymmetric contiguity effect 
increases across presentations in the serial-constant condition 
and, to a lesser extent, in the free-constant condition, while it 
is reduced in the free-varied condition. The model slightly 
over-predicts contiguity in the free-constant condition while 
slightly under-predicting contiguity in the serial-constant 
condition. We argue that this is because the model learns no 
strategy while performing the task. Humans performed each 
condition in a block, and we argue, were able to adapt their 
encoding/recall strategies based on their task instructions. To 
avoid overfitting, all three of our models used the same 
encoding strategy. Our goal was to show the amount of 
variance that could be captured by a low-level, automatic, and 
stimulus-driven mechanism such as associative learning. 

As a minor note, our model also correctly predicts 
increases in item score across presentations for all three 
conditions, with r2 = .96. Our model predicts this due to 
increased associativity and activation strengthening over 
multiple presentations. 

Alternate Accounts of List Learning 
The detailed results from Klein et al. (2005) present a 

challenge for many of the current theories of memory that 

explain serial and free recall of lists, which have modeled 
only a subset of its results.  The temporal context model 
(TCM, also called the context maintenance and retrieval 
model, CMR) (Polyn, Norman, & Kahana, 2009) for 
example, associates items with contextual states; when an 
item is recalled, so is its contextual state, which drives the 
recall of other temporally similar items.  They use this 
construct to account for both recency and asymmetric 
contiguity (Howard & Kahana, 2001). While they 
qualitatively describe how their model extends to serial 
recall, they do not explicitly model it, so it is unclear how 
good of a match it can achieve.  More importantly, they also 
do not model how these curves change over multiple 
presentations.  In contrast, the cornerstone of our theory of 
associative learning is explicitly modeling how associative 
strengths change with repeated exposure to items, allowing 
us to account for the multi-presentation recall data we discuss 
here. 

The start-end model (SEM) (Henson, 1998) relies upon 
implicit start and end markers of the list sequence, as well as 
tokens for spatiotemporal markers for each item, to make its 
predictions.  While these constructs allow it to successfully 
match data showing primacy and recency in single-trial serial 
recall, it does not explain serial recall’s contiguity effects.  It 
also does not model free recall, and the author also makes no 
predictions about how it would perform in a multi-trial 
setting. 

SIMPLE (Brown, Neath, & Chater, 2007) models both 
serial and free recall tasks.  Its predictions are generally based 
on the temporal distinctiveness of items in memory; it can 
also include other measures of distinctiveness (e.g., semantic 
distinctiveness).  More importantly, it has been matched 
against only data showing primacy and recency effects, and 
it does not appear to correctly predict asymmetric contiguity 
effects, nor how these effects change across multiple list 
presentations.  Like SIMPLE, we include a time-based 
component in the form of activation strengthening; our 
analog of their semantic distinctiveness, however, is our 
theory of associative learning, which more naturally explains 
the asymmetry that arises in conjunction with contiguity 
effects. 

Anderson et al. (1998) models both free and serial recall 
tasks, as well.  It also includes a simple conceptualization of 
item-item associations, and so it seems to predict contiguity 
effects after a single trial.  It does not, however, seem to 
predict how contiguity effects would increase over time.  This 
is because its associations, once learned, do not strengthen 
over time, they only potentially weaken as more and more 
items are encountered.  As we indicated earlier, however, 
overall we view this approach as one of the most promising 
both because of its close capture of SP and CRP curves, and 
because of its strong foundation in general cognition; that is 
why we have expanded upon it in this paper by adding in a 
richer notion of associative learning. 

Discussion 
In this paper we presented a theory of memory recall that 
includes a rich account of how associations are learned and 

Figure 3. Conditional Response Probability curves, showing 
the probability of recalling item i+lag after item i, across 
serial-constant, free-constant, and free-varied conditions for 
both human and model. Paneled from left to right are the 
results for presentations 1, 3, and 5, respectively. As seen, the 
model accurately captures not only the amount of asymmetric 
contiguity effect per condition, but also the change in the 
effect across multiple presentations. 
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strengthened over time.  We described how a single model 
with fixed parameters presented an excellent fit to human 
data across both free and serial multi-presentation list recall 
tasks, including modeling asymmetric contiguity effects than 
change over time. 

One criticism of other models of both free and serial recall 
has been that they do not well account for two notable effects 
that have been shown to differentiate between the two 
conditions (Murdock, 2008).  First, similarity between list 
items seem to facilitate performance on free recall tasks, but 
hinder performance on serial recall tasks.  Our model predicts 
this because of the nature of our associations, where similar 
items naturally become associated in memory; in fact, there 
is some evidence that similarity itself is based on associative 
learning (Hiatt & Trafton, 2013). This similarity would 
facilitate performance on a free recall task because 
remembering one item would activate similar items, boosting 
their recall probability.  For the same reason, it would hinder 
serial recall accuracy since similar items that appear out of 
order would hinder the recall of items in the correct order. 

Second, longer presentation rates have been shown to 
improve performance in free recall tasks, but do not affect 
performance on probe-digit experiments (a simplified version 
of serial recall).  We predict this because longer presentation 
rates, as opposed to the rapid presentation rate in this 
experiment, promote rehearsal; rehearsal, in turn, increases 
activation strengthening for list items. While this intuitively 
helps recall performance for free recall tasks, the serial 
effects of the items’ forward associations shield the probe-
digit experiment from any negative (or positive) implications 
of the higher activation strengthening. 

While associative learning account relies on item-item 
associations, these associations do not fall prey to the general 
criticisms against chaining models (Lee & Estes, 1977; see 
Henson, 1998 for critique). Specifically, since associations 
are formed between all items recently in working memory 
and a newly added item (i.e., what Henson (1998) refers to as 
compound-chaining) we avoid the brittleness of typical 
chaining theories, where a broken ‘link’ in the chain can 
cause cascading errors and leads to trouble matching 
behavioral data.  Instead, our approach can recover from such 
problems due to its richer association structure. 
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